(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))

Types:
and :: true:false → true:false → true:false
true :: true:false
false :: true:false
eq :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → true:false
nil :: nil:cons:var:apply:lambda
cons :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
var :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
apply :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
lambda :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
if :: true:false → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
ren :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
hole_true:false1_0 :: true:false
hole_nil:cons:var:apply:lambda2_0 :: nil:cons:var:apply:lambda
gen_nil:cons:var:apply:lambda3_0 :: Nat → nil:cons:var:apply:lambda

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
eq, ren

They will be analysed ascendingly in the following order:
eq < ren

(6) Obligation:

Innermost TRS:
Rules:
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))

Types:
and :: true:false → true:false → true:false
true :: true:false
false :: true:false
eq :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → true:false
nil :: nil:cons:var:apply:lambda
cons :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
var :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
apply :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
lambda :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
if :: true:false → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
ren :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
hole_true:false1_0 :: true:false
hole_nil:cons:var:apply:lambda2_0 :: nil:cons:var:apply:lambda
gen_nil:cons:var:apply:lambda3_0 :: Nat → nil:cons:var:apply:lambda

Generator Equations:
gen_nil:cons:var:apply:lambda3_0(0) ⇔ nil
gen_nil:cons:var:apply:lambda3_0(+(x, 1)) ⇔ cons(nil, gen_nil:cons:var:apply:lambda3_0(x))

The following defined symbols remain to be analysed:
eq, ren

They will be analysed ascendingly in the following order:
eq < ren

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
eq(gen_nil:cons:var:apply:lambda3_0(n5_0), gen_nil:cons:var:apply:lambda3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Induction Base:
eq(gen_nil:cons:var:apply:lambda3_0(0), gen_nil:cons:var:apply:lambda3_0(0)) →RΩ(1)
true

Induction Step:
eq(gen_nil:cons:var:apply:lambda3_0(+(n5_0, 1)), gen_nil:cons:var:apply:lambda3_0(+(n5_0, 1))) →RΩ(1)
and(eq(nil, nil), eq(gen_nil:cons:var:apply:lambda3_0(n5_0), gen_nil:cons:var:apply:lambda3_0(n5_0))) →RΩ(1)
and(true, eq(gen_nil:cons:var:apply:lambda3_0(n5_0), gen_nil:cons:var:apply:lambda3_0(n5_0))) →IH
and(true, true) →RΩ(1)
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))

Types:
and :: true:false → true:false → true:false
true :: true:false
false :: true:false
eq :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → true:false
nil :: nil:cons:var:apply:lambda
cons :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
var :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
apply :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
lambda :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
if :: true:false → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
ren :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
hole_true:false1_0 :: true:false
hole_nil:cons:var:apply:lambda2_0 :: nil:cons:var:apply:lambda
gen_nil:cons:var:apply:lambda3_0 :: Nat → nil:cons:var:apply:lambda

Lemmas:
eq(gen_nil:cons:var:apply:lambda3_0(n5_0), gen_nil:cons:var:apply:lambda3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_nil:cons:var:apply:lambda3_0(0) ⇔ nil
gen_nil:cons:var:apply:lambda3_0(+(x, 1)) ⇔ cons(nil, gen_nil:cons:var:apply:lambda3_0(x))

The following defined symbols remain to be analysed:
ren

(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol ren.

(11) Obligation:

Innermost TRS:
Rules:
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))

Types:
and :: true:false → true:false → true:false
true :: true:false
false :: true:false
eq :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → true:false
nil :: nil:cons:var:apply:lambda
cons :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
var :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
apply :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
lambda :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
if :: true:false → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
ren :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
hole_true:false1_0 :: true:false
hole_nil:cons:var:apply:lambda2_0 :: nil:cons:var:apply:lambda
gen_nil:cons:var:apply:lambda3_0 :: Nat → nil:cons:var:apply:lambda

Lemmas:
eq(gen_nil:cons:var:apply:lambda3_0(n5_0), gen_nil:cons:var:apply:lambda3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_nil:cons:var:apply:lambda3_0(0) ⇔ nil
gen_nil:cons:var:apply:lambda3_0(+(x, 1)) ⇔ cons(nil, gen_nil:cons:var:apply:lambda3_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_nil:cons:var:apply:lambda3_0(n5_0), gen_nil:cons:var:apply:lambda3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

(13) BOUNDS(n^1, INF)

(14) Obligation:

Innermost TRS:
Rules:
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))

Types:
and :: true:false → true:false → true:false
true :: true:false
false :: true:false
eq :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → true:false
nil :: nil:cons:var:apply:lambda
cons :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
var :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
apply :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
lambda :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
if :: true:false → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
ren :: nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda → nil:cons:var:apply:lambda
hole_true:false1_0 :: true:false
hole_nil:cons:var:apply:lambda2_0 :: nil:cons:var:apply:lambda
gen_nil:cons:var:apply:lambda3_0 :: Nat → nil:cons:var:apply:lambda

Lemmas:
eq(gen_nil:cons:var:apply:lambda3_0(n5_0), gen_nil:cons:var:apply:lambda3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_nil:cons:var:apply:lambda3_0(0) ⇔ nil
gen_nil:cons:var:apply:lambda3_0(+(x, 1)) ⇔ cons(nil, gen_nil:cons:var:apply:lambda3_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_nil:cons:var:apply:lambda3_0(n5_0), gen_nil:cons:var:apply:lambda3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

(16) BOUNDS(n^1, INF)